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Summary 

The growth and decay of the excited atom concentration and of 
106-7 nm fluorescence have been calculated, for the case of a cylindrical 
fluorescence cell having an axial exciting beam, at atom concentrations 
ranging from 1O1l to 101’ cm- 3. The decay of fluorescence is found to 
occur in two distinct stages, the first corresponding to the spread of 
excitation from the region of the exciting beam into the body of the 
fluorescence cell and the second corresponding to the slower escape of 
excitation from the cell as a whole. Trapping times calculated for the 
initial fast decay are in good agreement with experimental values in the 
literature. The effect of variations in the‘ljeam diameter, lamp pressure, 
cell diameter, length of excitation pulse, and quencher concentration 
have been investigated. In the presence of a quencher Q the trapping times 
obey a Stern-Volmer equation of the form 

T,/T= I+ &Jo[Ql 
where To is the value of the trapping time T in absence of quencher, at 
To/T values up to at least 20. At high quencher concentration the steady- 
state fluorescence intensity does not decrease as much as the trapping 
time because Lorentz broadening causes more light to be absorbed from 
the exciting beam. 

Introduction 

In a previous communication [ 13 trapping times were calculated for 
Cd 228.8 nm and Ar 106.7 nm fluorescence, over a limited range of 
fluorescer concentrations, in model systems similar to ones which had 

* On leave from the University of Canterbury, Christchurch, New Zealand. 
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Lamp 600K 
[Ad= 1.2~ 10" cm-’ 

Filter. 400 K, fOcm. long 
[Arl= I.4 II 10’7cm-f 

Fluorescence 
tignals. 
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-gram input window 

Cell, 300K, IOcm long. 
fOcm diameter 

Exit window 

Transmitted beam 
I cm diameter 

Fig. 1. Model system, with demensions as used in most of the calculations. Fluorescence 
escapes through the cylinder walls and through both end windows. 

been used experimentally [ 2 - 41. The trapping time was obtained from 
the phase-shift between the fundamental components of the fluorescence 
waveform from the model system and a square-wave excitation pulse. 
In the present work the trapping time has been obtained from the 
exponential decay of the fluorescence immediately following the excitation 
pulse. The lamp + filter + cell configuration that was assumed is shown in 
Fig. 1, with the dimensions that were used in most of the calculations. 
Improvements in the computer program allowed the beam diameter to be 
specified without reference to the number of radial steps in the cell grid, 
provided for a close spacing of grid steps at the edge of the exciting beam 
as well as at the edges of the cell, and allowed the grid dimensions to be as 
large as 14 X 15, 12 X 18, or 10 X 21. For most of the work to be describ- 
ed here a grid with 14 radial steps and 15 axial steps was chosen, in order 
to obtain maximum information about the radial profiles of the excited 
atom concentration. Calculated trapping times always differ by less than 
5%, and commonly by less than l%, between corresponding calculations 
using 10 X 15 and 14 X 15 grids. The program with maximum grid 
dimensions 10 X 15 occupies 64k of core storage; the program which 
handles the larger grids occupies 115k of store. 

The equation which is solved is [l] : 

dUKLldt=IKL -(Q+ TKL)uKL+ Mc (GUN -~KL)&L~~ (1) 

where UK, is the concentration of excited atoms in the annular Volume 
element specified by the indices K and L, I KL is the rate of absorption of 
light from the exciting beam in element KL, both at time t, Q is the 
pseudo-first order quenching rate coefficient, TKL is the rate coefficient 
for the escape of radiation from element KL to the exterior of the cell, 



243 

and GxLMN is the rate coefficient for transfer of radiation from element MN 
to a point in element KL. The elements of the large matrix GmN are 
given by: 

% LMN =WG~)*~KLMN*@KLMN 14~ 

where @xL&.,N is the average solid angle subtended by element MN from a 
point on element KL and R KLMN is the average thickness of element MN 
along a line drawn from the point in element KL. G(raY), where r,, is an 
appropriately weighted average distance to element MN from the point 
in element KL, is obtained by interpolation in a table of G(y) versus y, 
where G(y) is the integral: 

G(Y) = k$ j- k: exp( -.. k, y)dw 
0 0 

(2) 

where A is the Einstein coefficient and 12, is the absorption coefficient 
at a reduced distance w from the line centre. An analogous integral T(y), 
given in eqn. (4), is used in the evaluation of TxL and of the quantities 
TI; and Tc which govern the contribution of element KL to the fluorescence 
emitted radially: 

k, em4 -L y)dw 

In the current version of the program GktMN is not obtained from 
eqn. (Z), but from the expression: 

Gtz LMN = W,, WMN lWdv ) 

where VMN is the volume of element MN. This avoids the problems and 
inaccuracies associated with estimating @xLMN and &LMN individually. 
requirement of photon conservation 

(4) 

(5) 

The 

(6) 

has been used to check the accuracy of the G array at small optical depths, 
where eqn. (6) should tend to an equality. The results indicate that eqn. 
(5) overestimates &L~N slightly, on average, presumably because of the 
manner in which r,, is evaluated. The error in the sum of GxLMN over 
indices M and N is typically a few percent, and amounts to only 15% in 
the worst case. This degree of error in GxLMN has a negligible effect on 
calculated trapping times (as was shown by applying appropriate correction 
factors to the elements of the GxLMN array) because the trapping time is 
largely governed by the TKL array. 

At large optical depths the values of the integrals in eqns. (3) and (4) 
are controlled by the values of 12, in the extreme wings of the absorption 
line. Previously the integrals were evaluated by using Simpson’s rule over 
four ranges of integration, going from 0 to 2.8 in 15 steps of 0.2, from 
2.8 to 12.8 in 10 steps of 1.0, and from 12.8 to 62.8 in 10 steps of 5.0. 
In the fourth range 14 steps of at least 25.0, the actual step size being part 



244 

TABLE 1 

Effect of the size of the ten w steps in the extreme 
wings of the absorption line, beyond o = 62.8, on 
calculated trapping times. Sums to infinity use eqns, 
(7) and (8). [Ar] = 3 X 1016 cmm3. Results at three 
viewing positions, 0.053, 0.263, and 2.158 cm from 
the beam input window. 

cd step TI Ms) TzW) T3(w) 

15 9.66 13.04 17.27 
50 9.52 12.81 16.87 

150 9.16 12.37 16.14 
450 8.43 10.99 13.87 
Sums to infinity 9.33 12.64 16.71 

of the input data, were used to cover the remainder of the absorption line. 
However, at large optica depths the calculated trapping times are unduly 
sensitive to the step size in the fourth range of integration (Table 1). Because 
the accuracy of the integration suffers when the step size is made very 
large it is not possible to overcome this effect simply by going to larger and 
larger step sizes. Therefore the size of the steps in the range beyond w = 
62.8 has been kept below 100 in the most recent calculations and the 
integration from the maximum value w1 to infinity has been performed by 
summing the series: 

T5(y) = a(1 - b/3 + b2/2.5 -- b3/2.3.7 + b4/2.3.4.9 --- ..) (7) 

G,(y) = c(1/3 - b/5 + b2 /2.7 - b3 /2.3.9 + __) (8) 

where a is 2Acr/{wln), b is Iz~(Y~/(w:~T~), and c is ZAkocu2/(wfn3’2), and 
w1 is the maximum w value of the Simpson’s rule integrations. The series 
(7) and (8) result from expanding the exponentials in eqns. (3) and (4) 
and integrating term by term, using the fact that in the wings of the line 
k, is given by the dispersion formula [ 51: 

k, = k,a/(w2d+) (9) 

The series (7) and (8) converge quite rapidly once the number of terms is 
greater than the value of b. A series similar to (7) is summed to obtain the 
contribution from w1 to infinity to the rate of absorption from the 
incident beam, I’&. 

Results 

Form of the decay curves 
Representative decay curves, for 3 X 1014 and 3 X 1016 argon atoms/ 

cm3, are shown in Figs. 2 and 3, respectively. The curves of both sets are 
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Fig. 2. Decay of fluorescence at distances from the input window as marked on the 
curves, [Ar] = 3 x 1014 cm-‘, time step duration = 30 ns. 

Fig. 3. As in Fig. 2, but for [Ar] = 3 x 101” cmT3, time step duration = 600 ns. 

characterized by an initial rapid decay, followed by a slower decay whose 
rate is only slightly dependent upon the position of observation. The fast 
initial transient covers at least an order of magnitude of intensity and its 
decay time would therefore be expected to be the quantity determined 
when trapping times were measured by either phase-shift or pulse techniques. 
This expectation is borne out by the results of the present calculations; the 
two trapping times generally agree to within 10%. 

Excited atom concentration profiles 
The concentration profiles in Figs. 4 and 5 are associated with the 

transient decays at 0.053 cm from the beam input window in Fig. 2 and 
at 0.263 cm from the input window in Fig. 3, respectively. The curves in 
Fig. 5 do not correspond precisely to those in Fig. 3, in that the exciting 
beam in Fig. 5 was turned off at time step 200, instead of at time step 50, 
so that the decay could be observed from the steady state. The steady 
state profile is similar to those given previously [ 11. Both sets of profiles 
demonstrate that the fast transient corresponds to the spreading out of the 
excitation from the beam region into the body of the cell, a process which 
is superimposed upon the slower escape of radiation from the cell as a whole. 
The profile at time step 200 in Fig. 5 is only slightly different from that at 
step 50, so that the slope of the initial transient is not very different for 
decay from the steady state and for decay after a brief excitation pulse. 
The dependence of the initial decay rate on the duration of the exciting 
pulse is given in detail in Table 2 for an argon concentration of 3 X 101” 
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Fig. 4. Radial concentration profiles, 0.053 cm from input window, after the numbers 
of time steps that are marked on the curves. [Ar] = 3 X 1014 cm-‘, time step = 30 ns. 
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Fig. 5. Radial concentration profiles, 0.263 cm from input window, after the numbers of 
time steps marked on the curves. [Ar] = 3 X’lO1” CIII-~, time step = 500 ns. 

atom/cm- 3_ The output waveform for the case where the steady state 
fluorescence intensity is reached is not perfectly symmetrical, in that whereas 
the initial part of the decay curve can be superimposed exactly, after 
inversion, upon the initial part of the growth curve, the final decay occurs 
appreciably more slowly than the last part of the growth to the steady 
state. The initial decay rate is more dependent upon the diameter of the 
exciting beam than upon the diameter of the cell, as is demonstrated by 
the data in Fig. 6. Once again this emphasizes that the initial transient 
results mainly from the spreading out of the excitation from the region 
of the exciting beam, 
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TABLE 2 

Effect of exciting pulse duration on th!edecay rate of 
theainitial transient. Results for 3 x 10 Ar atoms/ 

cm , at 0.053, 0.263 and 2.158 cm from the point of 
entry of the exciting beam. Trapping time T = l/decay 
rate. (w steps = 100 in wings of line). 

Y pulse Us) T(/.u) at distances from input window 

0.053 cm 0.263 cm 2.158 cm 

100 9.46 12.67 16.67 
30 9.02 12.24 15.94 
10 8.57 12.00 15.58 

3 8.53 11.98 15.53 
1 8.45 11.95 15.48 

- 

o--o-- 0 263 on 

Fig. 6. (a) Variation of trapping time with beam diameter in a 10 cm diameter cell. 
[Ar] = 3 x 1016 cmU3. Distances from the beam input window as marked on the 
curves. (b) Variation of trapping time with cell diameter for a 1 cm diameter beam. 
[Ar] = 3 X 1016 cmv3. Distances from the beam input window as marked on curves. 
(W steps = 50 in wings of line; cf. Table 1). 

Variation of trapping time with argon pressure 
Results are given in Fig. 7 for three distances from the input window 

for the initial transient decay from the steady state. The limiting value at 
low pressures is equal to the natural lifetime of 8.3 ns [ 61. At high pres- 
sures there is good agreement with the experimental data of Wayne and 
coworkers [ 3]_ At intermediate pressures there is a considerable range over 
which the trapping time is proportional to the argon pressure. The disagree- 
ment with the experimental data at the lowest pressures at which 
measurements were made can be attributed at least partly to differences 
between the experimental system and the model, such as the use of a relative- 
ly large-aperture “channeltron” detector for the radiation. Differences in 
the lamp operating pressure, which in the model system acts via the number 
of absorbing atoms in the filter layer, would affect the observed trapping 
times by altering the distribution of excited atoms along the beam axis_ The 
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Fig. 7. Variation of trapping time with argon pressure, calculated from initial transient 
decays from the steady state, distances from the input window (top to bottom), 2.158, 
0.263 and 0.053 cm. The squares and triangles are two sets of experimental values from 
Fig. 8 of ref. 3. Integrations in the wings of the absorption line based on eqns. (7) and 

(8). 

TABLE 3 

Variation of calculated trapping time with the argon pressure in 
the filter layer. Results for three viewing positions as in Table 2. 
o step size = 150 in the line wings. [Filter pressure normally 
used: 1.4 x 101’ erK3.] 
- 

Filter pressure (10 cm path) 

[Ar] = 4.2 X 1017 cme3 
1.4 x lol’ 
4.2 x 1cP 
1.4 x lo= 
4.2 x lo= 
1.4 x 1o15 

G(P) Tz(P) T3Ws) 

9.17 12.39 16.15 
9.16 12.37 16.14 
9.06 12.23 16.10 
8.74 11.95 16.12 
8.36’ 11.61 16.64 
a.21 11.48 17.85 

results given in Table 3 indicate that the effects of variations in lamp pres- 
sure should not be very great, at least when the optical depth of the filter 
layer is large. Related to the effect of varying the lamp pressure is the effect 
of varying the temperature difference between lamp and fluorescence cell. 
As the results in Table 4 show, this is also a very small effect when the 
optical depth of the filter layer is large. 
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TABLE 4 

Effect of varying the temperature of the 

infinity used in line wings; ef. Table 1.) 

T(K) TI t/-M TzW4 T3Ws) 

400 9.44 12.63 16.66 
300 9.33 12.64 16.60 
200 9.36 12.77 16.71 

Effect of quenching on the initial tmnsient decay 
Rate constants for quenching reactions of Ar( aP1 ) have previously 

been determined [4) from decay rates for the initial transient and from 
steady-state fluorescence intensities, on the basis of the assumption that 
both the trapping time T and the intensity I obey the Stern-Volmer 
equation: 

IO/I= To/T= 1 +kaTo[Q] (10) 

where TO is the trapping time measured in absence of quencher and k, [Q] 
is identical with the quantity Q which appears in eqn. (1). However, as the 
authors point out, there is no a priori reason to assume that this assumption 
is even approximately valid, and in fact detailed theoretical considerations 
[7] suggest that in general it is not likely to be. In part, their work amounts 
to an experimental test of this assumption, which is shown to be correct 
within an uncertainty of about + 15%. Table 5 contains the results of 
computer simulations for quenching by NO. The Lorentz broadening 
cross-section was taken as 7 X lo-l5 cm2, and the rate constant 12, was 
given its experimental value of 2.6 X 10-l* cm3 molecule-’ s-l [4]. It 
can be seen that the trapping times T for the model system agree with those 
predicted from eqn. (10) to within 2%, which lends confidence to the 
experimentally measured quenching constants. The steady-state intensities 
do not agree so well with the predicted values, the intensity always being 
somewhat greater than expected. The discrepancy amounts to 10% at the 
highest pressure of NO. A similar effect was observed experimentally in 
the quenching of Hg 253.7 nm fluorescence [8] , where it was attributed 
to the effect of pressure broadening on the rate of absorption of light from 
the exciting beam. It should be noted that the largest broadening effect 
in Table 5 is found for an NO pressure of only 0.3 Torr; with a weaker 
quencher the effect would be relatively more significant. 
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TABLE 5 

Comparison of calculated trapping times and steady state intensities with values predict- 

and [Q] = [NO], using eqn. ( 10). Results for three viewing positions. 

yz=ml% k-r”, ke = 2.6 X 10W1’ cm3 moiecule-1 s-l. w step size = 250 in line wings. 

[NOI Calculated T (~Ls) Predicted T (ps) 

zero 7.009 8.694 10.57 
3 x lol* 4.455 5.146 5.752 4.532 5.181 5.793 
1 x 1615 2.444 2.651 2.803 2.483 2.667 2.820 
3 x lOI5 1.073 1.113 1.139 1.084 1.117 1.143 
6 x 1015 0.5835 0.5952 0.6026 0.5873 0.5970 0.6044 
1 x lOI” 0.3628 0.3674 0.3703 0.3646 0.3683 0.3711 

[NOI Calculated I (X lOlo photon/s) Predicted I 

zero 12.506 15.531 16.868 

;; ;$ 4.458 8.056 4.779 9.229 4.516 9.219 4.431 8.086 4.764 9.255 9.245 4.501 
;; ;$ 1.993 1.110 2.040 1.118 1.865 1.009 1.048 1.934 1.996 1.067 0.964 1.825 

1 x lo= 0.712 0.711 0.638 0.650 0.658 0.592 

Conclusions 

The problem of radiation trapping could, in a sense, be regarded as 
solved once Holstein [ 9, lo] had pointed out the inadequacy of theories 
based on diffusion of radiation with a finite mean-free-path [ 11 - 131 and 
had used the Ritz variation method to solve the Biberman-Holstein 
equation, of which eqn. (1) is one form. Subsequent work by Walsh [14], 
Van Trigt [ 151, and Van Volkenburgh and Carrington [ 71 extended his 
solutions in various ways, but the results which were obtained for idealised 
systems, such as infinite slabs and cylinders with uniform illumination, 
were not very easy to apply to practical situations. The advantage of the 
present calculations is that they employ a model which is easy to realize 
experimentally and is a close approximation to many experimental systems 
that have been used in the past. The calculation can take account of such 
experimental variables as beam diameter, cell size, temperature, observation 
point, extent of reversal of the source line, buffer gas composition, and 
type of line broadening which is present. The two-layer lamp + filter model 
which is used for the light source, derived ultimately from the work of 
Braun and coworkers [ 16, 171, is also a realistic approximation to a 
commonly-used type of experimental system. The excellent agreement that 
has been obtained between experimental and calculated trapping times 
indicates that the computer program is likely to be of practical value in 
the future as a predictive tool. Atomic transitions which are of interest for 
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future work include Lyman-c, the oxygen triplet at 130.5 nm, the nitrogen 
triplet at 120 nm, and the mercury lines at 184.9 and 235. 7 nm. For the 
253.7 nm line it will be interesting to follow Walsh and Holstein and 
compare the calculated results with the experimental data of Alpert et aE. 
1181. 
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